please dont rip this site

Scenix Sxdemo.src

; ******************************************************************************
;       Enhanced SX Demo with I2C (EEPROM) Interface  - (C) Copyright 1998
;
;
;       Length: 573 bytes (total)
;       Authors: Chip Gracey, President, Parallax Inc.
;		   modified by Craig Webb, Consultant to Scenix Semiconductor, Inc.
;       Written: 97/03/10 to 98/6/03
;
;       This program implements five virtual peripherals on Parallax, Inc.'s
;       SX DEMO board. The various virtual peripherals are as follows:
;       
;       1) 16-bit timer/frequency outputs (2)
;       2) Pulse-Width Modulated outputs (2)
;       3) Analog-to-Digital Converter(s) (ADC) (2)
;       4) Universal Asynchronous Receiver Transmitter (UART)
;       5) I2C serial (EEPROM) interface
;
;       All of these peripherals (except the I2C interface) take advantage
;       of the SX's internal RTCC-driven interrupt so that they can operate
;       in the background while the main program loop is executing.
;
;	Improvements over SX Demo original version:
;		- I2C protocol EEPROM store/retrieve subroutines added
;		- 3 new UART user-interface functions added to access EEPROM
;		- faster, shorter timer/freqency output code
;		- faster, shorter analog to digital converter code
;		- bug removed from adc code (adc value=0FFh when input=5V)
;		- faster, shorter UART transmit code
;
;******************************************************************************
;
;****** Assembler directives
;
; uses: SX28AC, 2 pages of program memory, 8 banks of RAM, high speed osc.
;       operating in turbo mode, with 8-level stack & extended option reg.
;                
		DEVICE  pins28,pages2,banks8,oschs
		DEVICE  turbo,stackx,optionx
		ID      'SX Demo+'              ;program ID label
		RESET   reset_entry             ;set reset/boot address
;
;******************************* Program Variables ***************************
;
; Port Assignment: Bit variables
;
scl             EQU     RA.0                    ;I2C clock
sda             EQU     RA.1                    ;I2C data I/O
rx_pin          EQU     ra.2                    ;UART receive input
tx_pin          EQU     ra.3                    ;UART transmit output
led_pin         EQU     rb.6                    ;LED output
spkr_pin        EQU     rb.7                    ;Speaker output
pwm0_pin        EQU     rc.0                    ;Pulse width mod. PWM0 output
pwm1_pin        EQU     rc.2                    ;Pulse width mod. PWM1 output
adc0_out_pin    EQU     rc.4                    ;ADC0 input pin
adc0_in_pin     EQU     rc.5                    ;ADC0 output/calibrate pin
adc1_out_pin    EQU     rc.6                    ;ADC1 input pin
adc1_in_pin     EQU     rc.7                    ;ADC1 output/calibrate pin
;
;
;****** Register definitions (bank 0)
;
		org     8                       ;start of program registers
main		=       $                       ;main bank
;
temp		ds      1                       ;temporary storage
byte		ds      1                       ;temporary UART/I2C shift reg.
cmd		ds      1
number_low	ds      1                       ;low byte of rec'd value
number_high	ds      1                       ;high byte of rec'd value
hex		ds      1                       ;value of rec'd hex number
string		ds      1                       ;indirect ptr to output string
flags		DS      1                       ;program flags register
;
got_hex		EQU     flags.0                 ;=1 if hex value after command
seq_flag	EQU     flags.1                 ;I2C: R/W mode (if sequential=1)
got_ack		EQU     flags.2                 ;     if we got ack signal
erasing		EQU     flags.3                 ;     high while erasing eeprom
;
		org     30h                     ;bank1 variables
timers		=       $                       ;timer bank
;
timer_low	ds      1                       ;timer value low byte
timer_high	ds      1                       ;timer value high byte
timer_accl	ds      1                       ;timer accumulator low byte
timer_acch	ds      1                       ;timer accumulator high byte

freq_low	ds      1                       ;frequency value low byte
freq_high	ds      1                       ;frequency value high byte
freq_accl	ds      1                       ;frequency accumulator low byte
freq_acch	ds      1                       ;frequency accumulator high byte
;
;
		org     50h                     ;bank2 variables
analog		=       $                       ;pwm and ADC bank
;
port_buff	ds      1                       ;buffer - used by all
pwm0		ds      1                       ;pwm0 - value
pwm0_acc	ds      1                       ;     - accumulator
pwm1		ds      1                       ;pwm1 - value
pwm1_acc	ds      1                       ;     - accumulator
adc0		ds      1                       ;adc0 - value
adc0_count	ds      1                       ;     - real-time count
adc0_acc	ds      1                       ;     - accumulator
adc1		ds      1                       ;adc1 - value
;adc1_count	ds      1                       ;     - real-time count
adc1_acc	ds      1                       ;     - accumulator
;
;
		org     70h                     ;bank3 variables
serial		=       $                       ;UART bank
;
tx_high		ds      1                       ;hi byte to transmit
tx_low		ds      1                       ;low byte to transmit
tx_count	ds      1                       ;number of bits sent
tx_divide	ds      1                       ;xmit timing (/16) counter
rx_count	ds      1                       ;number of bits received
rx_divide	ds      1                       ;receive timing counter
rx_byte		ds      1                       ;buffer for incoming byte
rx_flag		ds      1                       ;signals byte received
;
; The following three values determine the UART baud rate.
; The value of baud_bit and int_period affect the baud rate as follows:
;  Baud rate = 50MHz/(2^baud_bit * int_period * RTCC_prescaler)
;       Note:   1 =< baud_bit =< 7
;               *int_period must <256 and longer than the length of the slowest
;                       possible interrupt sequence in instruction cycles.
;                       Changing the value of int_period will affect the
;                       rest of the virtual peripherals due to timing issues.
; The start delay value must be set equal to (2^baud_bit)*1.5 + 1
;
; *** 19200 baud
baud_bit	=       4                       ;for 19200 baud
start_delay	=       16+8+1                  ; "    "     "
int_period	=       163                     ; "    "     "
;
; *** 2400 baud (for slower baud rates, increase the RTCC prescaler)
;baud_bit	=       7                       ;for 2400 baud
;start_delay	=       128+64+1                ; "    "    "
;int_period	=       163                     ; "    "    "
;
; *** 115.2k baud (for faster rates, reduce int_period - see above*)
;baud_bit	=       1                       ;for 115.2K baud
;start_delay	=       2+1+1                   ; "    "     "
;int_period	=       217                     ; "    "     "
;
		org     90H                     ;bank4 variables
I2C		EQU     $                       ;I2C bank
;
data		DS      1                       ;data byte from/for R/W
address		DS      1                       ;byte address
count		DS      1                       ;bit count for R/W
delay		DS      1                       ;timing delay for write cycle
byte_count	DS      1                       ;number of bytes in R/W
num_bytes	DS      1                       ;number of byte to view at once
save_addr	DS      1                       ;backup location for address
;
in_bit		EQU     byte.0                  ;bit to receive on I2C
out_bit		EQU     byte.7                  ;bit to transmit on I2C 
;
control_r	=       10100001b               ;control byte: read E2PROM
control_w	=       10100000b               ;control byte: write E2PROM
portsetup_r	=       00000110b               ;Port A config: read bit
portsetup_w	=       00000100b               ;Port A config: write bit
eeprom_size	=       128                     ;storage space of EEPROM
;
t_all		=       31                      ;bit cycle delay (62=5 usec)
;**************************** INTERRUPT CODE *******************************
;
; Note: The interrupt code must always originate at 0h.
;       Care should be taken to maintain constant code timing through the 
; 	 interupt chain, to avoid corrupting any timing sensitive routines
;       (such as adcs, UARTS, etc.).
;
interrupt	ORG     0                       ;interrupt starts at 0h
;
;
;****** Virtual Peripheral: TIMERS (including frequency output)
;
; This routine adds a programmable value to a 16-bit accumulator (a pair of
;  two 8-bit registers) during each pass through the interrupt. It then
;  copies the value from the high bit of the accumulator to the
;  appropriate output port pin (LED, speaker, etc.)
;
;	Input variable(s) : timer_low,timer_high,timer_accl,timer_acch
;				    freq_low,freq_high,freq_accl,freq_acch
;	Output variable(s) : LED port pin, speaker port pin
;	Variable(s) affected : timer_accl, timer_acch, freq_accl, freq_acch
;	Flag(s) affected : none
;	Size : 1 byte + 10 bytes (per timer)
;	Timing (turbo) : 1 cycle + 10 cycles (per timer)
;
		bank    timers                  ;switch to timer reg. bank
:timer
;		clc                             ;only needed if CARRYX=ON
		add     timer_accl,timer_low    ;adjust timer's accumulator
		addb    timer_acch,c            ; including carry bit
		add     timer_acch,timer_high   ; (timer = 16 bits long)        
		movb    led_pin,timer_acch.7    ;toggle LED (square wave)
:frequency
;		clc                             ;only needed if CARRYX=ON
		add     freq_accl,freq_low      ;adjust freq's accumulator
		addb    freq_acch,c             ; including carry bit
		add     freq_acch,freq_high     ; (freq = 16 bits long) 
		movb    spkr_pin,freq_acch.7    ;toggle speaker(square wave)
;
;
;***** Virtual Peripheral: Pulse Width Modulators
;
; These routines create an 8-bit programmable duty cycle output at the
; respective pwm port output pins whose duty cycle is directly proportional
; to the value in the corresponding pwm register. This value is added to an
; accumulator on each interrupt pass interrupt. When the addition causes a
; carry overflow, the ouput is set to the high part of its duty cycle.
; These routines are timing critical and must be placed before any
; variable-execution-rate code (like the UART, for example).
;
;	Input variable(s) : pwm0,pwm0_acc,pwm1,pwm1_acc
;	Output variable(s) : pwm port pins
;	Variable(s) affected : port_buff, pwm0_acc, pwm1_acc
;	Flag(s) affected : none
;	Size : 2 bytes + 4 bytes (per pwm)
;		+ 2 bytes shared with adc code (see below)
;	Timing (turbo) : 2 cycles + 4 cycles (per pwm)
;			 + 2 cycles shared with adc code (see below)
;
		bank    analog                  ;switch to adc/pwm bank
		clr     port_buff               ;clear pwm/adc port buffer
;
:pwm0        add     pwm0_acc,pwm0           ;adjust pwm0 accumulator
		snc                             ;did it trigger?
		setb    port_buff.0             ;yes, toggle pwm0 high
:pwm1        add     pwm1_acc,pwm1           ;adjust pwm1 accumulator
		snc                             ;did it trigger?
		setb    port_buff.2             ;yes, toggle pwm1 high
;
;*** If the ADC routines are removed, the following instruction must be
;*** enabled (uncommented) for the PWM routine to function properly:
;:update_RC	mov     rc,port_buff            ;update cap. discharge pins
;
;
;***** Virtual Peripheral: Bitstream Analog to Digital Converters
;
; These routines allow an 8-bit value to be calculated which corresponds
; directly (within noise variation limits) with the voltage (0-5V) present
; at the respective adc port input pins. These routines are timing critical
; and must be placed before any variable-execution-rate code (like the UART,
; for example). The currently enabled routine (version A) has been optimized
; for size and speed, and RAM register usage, however a fixed execution rate,
; yet slightly larger/slower routine (version B) is provided in commented
; (disabled) form to simplify building other timing-critical virtual
; peripheral combinations (i.e. that require fixed rate preceeding code).
;    Note: if version B is selected, version A must be disabled (commented)
;
;	Input variable(s) : adc0,adc0_acc,adc0_count,adc1,adc1_acc,adc1_count
;	Output variable(s) : pwm port pins
;	Variable(s) affected : port_buff, pwm0_acc, pwm1_acc
;	Flag(s) affected : none
;	Size (version A) : 9 bytes + 7 bytes (per pwm)
;				+ 2 bytes shared with adc code (see below)
;	Size (version B) : 6 bytes + 10 bytes (per pwm)
;				+ 2 bytes shared with pwm code (see below)
;	Timing (turbo)
;		version A : 2 cycles shared with pwm code (see below) +
;				(a) [>99% of time] 11 cycles + 4 cycles (per adc)
;				(b) [<1% of time] 9 cycles + 7 cycles (per adc)
;		version B : 6 cycles + 10 cycles (per adc)
;				+ 2 cycles shared with pwm code (see below)
;
;*** If the PWM routines are removed, the following 2 instructions must
;*** be enabled (uncommented) for the ADC routine to function properly:
;		bank    analog                  ;switch to adc/pwm bank
;		clr     port_buff               ;clear pwm/adc port buffer

:adcs        mov     w,>>rc                  ;get current status of adc's
		not     w                       ;complement inputs to outputs
		and     w,#%01010000            ;keep only adc0 & adc1
		or      port_buff,w             ;store new value into buffer
:update_RC	mov     rc,port_buff            ;update cap. discharge pins

;
; VERSION A - smaller, quicker but with variable execution rate
;
:adc0        sb      port_buff.4             ;check if adc0 triggered?
		INCSZ   adc0_acc                ;if so, increment accumulator
		INC     adc0_acc                ; and prevent overflowing
		DEC     adc0_acc                ; by skipping second 'INC'

:adc1        sb      port_buff.6             ;check if adc1 triggered
		INCSZ   adc1_acc                ;if so, increment accumulator
		INC     adc1_acc                ; and prevent overflowing
		DEC     adc1_acc                ; by skipping second 'INC'

		INC     adc0_count              ;adjust adc0 timing count
		JNZ     :done_adcs              ;if not done, jump ahead
:update_adc0	MOV     adc0,adc0_acc           ;samples ready, update adc0
:update_adc1	MOV     adc1,adc1_acc           ; update adc1
:clear_adc0	CLR     adc0_acc                ; reset adc0 accumulator
:clear_adc1	CLR     adc1_acc                ; reset adc1 accumulator
;
; <end of version A>
;
; VERSION B - fixed execution rate
;
;*** The "adc1_count" register definition in the analog bank definition 
;*** section must be enabled (uncommented) for this routine to work properly
;
;:adc0		sb	port_buff.4		;check if adc0 triggered
;		INCSZ adc0_acc		;if so, increment accumulator
;		INC   adc0_acc		; and prevent overflowing
;		DEC   adc0_acc		; by skipping second 'INC'
;		mov	w,adc0_acc		;load W from accumulator
;		inc	adc0_count		;adjust adc0 timing count
;		snz				;are we done taking reading?
;		mov	adc0,w			;if so, update adc0
;		snz				;
;		clr	adc0_acc		;if so, reset accumulator
;
;:adc1		sb	port_buff.6		;check if adc1 triggered
;		INCSZ adc1_acc              ;if so, increment accumulator
;		INC   adc1_acc              ; and prevent overflowing
;		DEC   adc1_acc              ; by skipping second 'INC'
;		mov	w,adc1_acc		;load W from accumulator
;		inc	adc1_count		;adjust adc1 timing count
;		snz				;are we done taking reading?
;		mov	adc1,w			;if so, update adc1
;		snz				;
;		clr	adc1_acc		;if so, reset accumulator
;
; <end of version B>
;

:done_adcs

;
;**** Virtual Peripheral: Universal Asynchronous Receiver Transmitter (UART)
;
; This routine sends and receives RS232C serial data, and is currently
; configured (though modifications can be made) for the popular
; "No parity-checking, 8 data bit, 1 stop bit" (N,8,1) data format.
; RECEIVING: The rx_flag is set high whenever a valid byte of data has been
; received and it the calling routine's responsibility to reset this flag
; once the incoming data has been collected.
; TRANSMITTING: The transmit routine requires the data to be inverted
; and loaded (tx_high+tx_low) register pair (with the inverted 8 data bits
; stored in tx_high and tx_low bit 7 set high to act as a start bit). Then
; the number of bits ready for transmission (10 = 1 start + 8 data + 1 stop)
; must be loaded into the tx_count register. As soon as this latter is done,
; the transmit routine immediately begins sending the data.
; This routine has a varying execution rate and therefore should always be
; placed after any timing-critical virtual peripherals such as timers,
; adcs, pwms, etc.
; Note: The transmit and receive routines are independent and either may be
;	removed, if not needed, to reduce execution time and memory usage,
;	as long as the initial "BANK serial" (common) instruction is kept.
;
;	Input variable(s) : tx_low (only high bit used), tx_high, tx_count
;	Output variable(s) : rx_flag, rx_byte
;	Variable(s) affected : tx_divide, rx_divide, rx_count
;	Flag(s) affected : rx_flag
;	Size : Transmit - 15 bytes + 1 byte shared with receive code
;		  Receive - 20 bytes + 1 byte shared with transmit code
;	Timing (turbo) : 
;	       Transmit -	(a) [not sending] 9 cycles
;				(b) [sending] 19 cycles
;				 + 1 cycle shared with RX code ("bank" instr.)
;		  Receive -	(a) [not receiving] 9 cycles
;				(b) [start receiving] 16 cycles
;				(c) [receiving, awaiting bit] 13 cycles
;				(d) [receiving, bit ready] 17 cycles
;
;
		bank    serial                  ;switch to serial register bank

:transmit    clrb    tx_divide.baud_bit      ;clear xmit timing count flag
		inc     tx_divide               ;only execute the transmit routine
		STZ                             ;set zero flag for test
		SNB     tx_divide.baud_bit      ; every 2^baud_bit interrupt
		test    tx_count                ;are we sending?
		JZ      :receive                ;if not, go to :receive
		clc                             ;yes, ready stop bit
		rr      tx_high                 ; and shift to next bit
		rr      tx_low                  ;
		dec     tx_count                ;decrement bit counter
		movb    tx_pin,/tx_low.6        ;output next bit
;
:receive     movb    c,rx_pin                ;get current rx bit
		test    rx_count                ;currently receiving byte?
		jnz     :rxbit                  ;if so, jump ahead
		mov     w,#9                    ;in case start, ready 9 bits
		sc                              ;skip ahead if not start bit
		mov     rx_count,w              ;it is, so renew bit count
		mov     rx_divide,#start_delay  ;ready 1.5 bit periods
:rxbit       djnz    rx_divide,:rxdone       ;middle of next bit?
		setb    rx_divide.baud_bit      ;yes, ready 1 bit period
		dec     rx_count                ;last bit?
		sz                              ;if not
		rr      rx_byte                 ;  then save bit
		snz                             ;if so
		setb    rx_flag                 ;  then set flag
:rxdone
;
		mov     w,#-int_period          ;interrupt every 'int_period' clocks
:end_int	retiw                           ;exit interrupt
;
;******	End of interrupt sequence
;
;***************************** PROGRAM DATA ********************************
;
; String data for user interface (must be in lower half of memory page)
;
_hello          dw      13,10,13,10,'SX Virtual Peripheral Demo+'
_cr             dw      13,10,0
_prompt         dw      13,10,'>',0
_error          dw      'Error!',13,10,0
_hex            dw      '0123456789ABCDEF'
_space          dw      ' ',0
_sample         dw      13,10,'Sample=',0
_view           dw      13,10,'Bytes stored:',0
;
;***************************** SUBROUTINES *********************************
;
; Subroutine - Get byte via serial port
;
get_byte     jnb     rx_flag,$		;wait till byte is received
		clrb    rx_flag		;reset the receive flag
		mov     byte,rx_byte		;store byte (copy using W)
						; & fall through to echo char back
;
; Subroutine - Send byte via serial port
;
send_byte    bank    serial

:wait        test    tx_count                ;wait for not busy
		jnz     :wait                   ;

		not     w                       ;ready bits (inverse logic)
		mov     tx_high,w               ; store data byte
		setb    tx_low.7                ; set up start bit
		mov     tx_count,#10            ;1 start + 8 data + 1 stop bit
		RETP                            ;leave and fix page bits
;
; Subroutine - Send hex byte (2 digits)
;
send_hex     mov     w,#_cr                  ;get <cr> with <lf>
		call    send_string             ; and send it
:num_only    mov     w,<>number_low          ;get first digit
		call    :digit                  ; and send it
		mov     w,number_low            ;load 2nd digit

:digit       and     w,#$F                   ;read hex chr
		mov     temp,w                  ; and store it temporarily
		mov     w,#_hex                 ;load hex table address
;            clc                             ;only needed if CARRYX used
		add     w,temp                  ;calculate hex table offset
		mov     m,#0                    ; and go get the appropriate
		iread                           ; character with indirect
		mov     m,#$F                   ; addressing using MODE reg.
		jmp     send_byte               ;go send hex character
;
;
; Subroutine - Send string pointed to by address in W register
;
send_string  mov     string,w                ;store string address
:loop        mov     w,string                ;read next string character
		mov     m,#0                    ; with indirect addressing
		iread                           ; using the mode register
		mov     m,#$F                   ;reset the mode register
		test    w                       ;are we at the last char?
		snz                             ;if not=0, skip ahead
		RETP                            ;yes, leave & fix page bits
		call    send_byte               ;not 0, so send character
		inc     string                  ;point to next character
		jmp     :loop                   ;loop until done
;
;
; Subroutine - Make byte uppercase
;
uppercase    csae	  byte,#'a'               ;if byte is lowercase, then skip ahead
		ret

		sub     byte,#'a'-'A'           ;change byte to uppercase
		RETP                            ;leave and fix page bits
;
; Subroutine - Convert hex number from ascii
;
get_hex      clr     number_low              ;reset number
		clr     number_high
		CLRB    got_hex                 ;reset hex value flag
:loop        call    get_byte                ;get digit
		cje     byte,#' ',:loop         ;ignore spaces
		mov     w,<>byte                ;get nibble-swapped byte
		mov     hex,w                   ; into hex register
		cjb     byte,#'0',:done         ;if below '0', done
		cjbe    byte,#'9',:got          ;if '0'-'9', got hex digit
		call    uppercase               ;make byte uppercase
		cjb     byte,#'A',:done         ;if below 'A', done
		cja     byte,#'F',:done         ;if above 'F', done
		add     hex,#$90                ;'A'-'F', adjust hex digit
:got         mov     temp,#4                 ;shift digit into number
:shift       rl      hex                     ; by rotating
		rl      number_low              ; all three registers
		rl      number_high             ; left 4 times
		djnz    temp,:shift             ;
		SETB    got_hex                 ;flag that we got a value
		jmp     :loop                   ;go get next digit
:cr          call    get_byte                ;get a byte via serial port
:done        cjne    byte,#13,:cr            ;loop until it's a <cr>
		RETP                            ;leave and fix page bits
;
;
;******************************** I2C Subroutines **************************
;
; These routines write/read data to/from the 24LCxx EEPROM at a rate of
; approx. 200kHz. For faster* reads (up to 400 kHz max), read, write, start
; and stop bit cycles and time between each bus access must be individually
; tailored using the CALL Bus_delay:custom entry point with appropriate
; in the W register:
; In turbo mode: delay[usec] = 1/xtal[MHz] * (6 + 4 * (W-1))
; Acknowledge polling is used to reduce delays between successive operations 
; where the first of the two is a write operation. In this case, the speed
; is limited by the EEPROM's storage time.
;
; Note: These subroutines are in the 2nd memory page, so appropriate care
; should be used for accessing them in regards to setting page select bits.
		ORG     200h
;
;
;****** Subroutine(s) : Write to I2C EEPROM
; These routines write a byte to the 24LCxxB EEPROM. Before calling this
; subroutine, the address and data registers should be loaded accordingly.
; The sequential mode flag should be clear for normal byte write operations.
; To write in sequential/page mode, please see Scenix' I2C application note.
;
;       Input variable(s) : data, address, seq_flag
;       Output variable(s) : none
;       Variable(s) affected : byte, temp, count, delay
;       Flag(s) affected : none
;       Timing (turbo) : approx. 200 Kbps write rate
;                      : approx. 10 msec between successive writes
;
I2C_write    CALL    Set_address             ;write address to slave
:page_mode   MOV     W,data                  ;get byte to be sent
		CALL    Write_byte              ;Send data byte
		JB      seq_flag,:done          ;is this a page write?
		CALL    Send_stop               ;no, signal stop condition
:done        RETP                            ;leave and fix page bits
;
Set_address  CALL    Send_start              ;send start bit
		MOV     W,#control_w            ;get write control byte
		CALL    Write_byte              ;Write it & use ack polling
		JNB     got_ack,Set_address     ; until EEPROM ready
		MOV     W,address               ;get EEPROM address pointer
		CALL    Write_byte              ; and send it
		RETP                            ;leave and fix page bits
;
Write_byte   MOV     byte,W                  ;store byte to send
		MOV     count,#8                ;set up to write 8 bits
:next_bit    CALL    Write_bit               ;write next bit
		RL      byte                    ;shift over to next bit
		DJNZ    count,:next_bit         ;whole byte written yet?
		CALL    Read_bit                ;yes, get acknowledge bit
		SETB    got_ack                 ;assume we got it
		SNB     in_bit                  ;did we get ack (low=yes)?
		CLRB    got_ack                 ;if not, flag it
;
; to use the LED as a 'no_ack' signal, the ':toggle_led' line in the interrupt
;  section must be commented out, and the next 3 instructions uncommented.
;            CLRB    led_pin                 ;default: LED off
;            SNB     in_bit                  ;did we get ack (low=yes)?
;            SETB    led_pin                 ; if not, flag it with LED
;
		RETP                            ;leave and fix page bits
;
Write_bit    MOVB    sda,out_bit             ;put tx bit on data line
		MOV     !ra,#portsetup_w        ;set Port A up to write
		JMP     :delay1                 ;100ns data setup delay
:delay1      JMP     :delay2                 ; (note: 250ns at low power)
:delay2      SETB    scl                     ;flip I2C clock to high
;            MOV     W,#t_high               ;get write cycle timing*
		CALL    Bus_delay               ;do delay while bus settles
		CLRB    scl                     ;return I2C clock low
		MOV     !ra,#portsetup_r        ;set sda->input in case ack
;            MOV     W,#t_low                ;get clock=low cycle timing*
		CALL    Bus_delay               ;allow for clock=low cycle
		RETP                            ;leave and fix page bits
;
Send_start   SETB    sda                     ;pull data line high
		MOV     !ra,#portsetup_w        ;setup I2C to write bit
		JMP     :delay1                 ;100ns data setup delay
:delay1      JMP     :delay2                 ; (note: 250ns at low power)
:delay2      SETB    scl                     ;pull I2C clock high
;            MOV     W,#t_su_sta             ;get setup cycle timing*
		CALL    Bus_delay               ;allow start setup time
:new         CLRB    sda                     ;data line goes high->low
;            MOV     W,#t_hd_sta             ;get start hold cycle timing*
		CALL    Bus_delay               ;allow start hold time          
		CLRB    scl                     ;pull I2C clock low
;            MOV     W,#t_buf                ;get bus=free cycle timing*
		CALL    Bus_delay               ;pause before next function             
		RETP                            ;leave and fix page bits
;
Send_stop    CLRB    sda                     ;pull data line low
		MOV     !ra,#portsetup_w        ;setup I2C to write bit
		JMP     :delay1                 ;100ns data setup delay
:delay1      JMP     :delay2                 ; (note: 250ns at low power)
:delay2      SETB    scl                     ;pull I2C clock high
;            MOV     W,#t_su_sto             ;get setup cycle timing*
		CALL    Bus_delay               ;allow stop setup time
		SETB    sda                     ;data line goes low->high
;            MOV     W,#t_low                ;get stop cycle timing*
		CALL    Bus_delay               ;allow start/stop hold time             
		RETP                            ;leave and fix page bits
;
Bus_delay    MOV     W,#t_all                ;get timing for delay loop
:custom      MOV     temp,W                  ;save it
:loop        DJNZ    temp,:loop              ;do delay
		RETP                            ;leave and fix page bits
;
;****** Subroutine(s) : Read from I2C EEPROM
; These routines read a byte from a 24LCXXB E2PROM either from a new address
; (random access mode), from the current address in the EEPROM's internal
; address pointer (CALL Read_byte:current), or as a sequential read. In either
; the random access or current address mode, seq_flag should be clear. Please
; refer to the application note on how to access the sequential read mode.
;
;       Input variable(s) : address, seq_flag
;       Output variable(s) : data
;       Variable(s) affected : byte, temp, count, delay
;       Flag(s) affected : none
;       Timing (turbo) : reads at approx. 200Kbps 
;
I2C_read     CALL    Set_address             ;write address to slave
:current     CALL    Send_start              ;signal start of read
		MOV     W,#control_r            ; get read control byte
		CALL    Write_byte              ; and send it
:sequential  MOV     count,#8                ;set up for 8 bits
		CLR     byte                    ;zero result holder
:next_bit    RL      byte                    ;shift result for next bit
		CALL    Read_bit                ;get next bit
		DJNZ    count,:next_bit         ;got whole byte yet?
		MOV     data,byte               ;yes, store what was read
		SB      seq_flag                ;is this a sequential read?
:non_seq     JMP     Send_stop               ; no, signal stop & exit
		CLRB    out_bit                 ; yes, setup acknowledge bit
		CALL    Write_bit               ;   and send it
		RETP                            ;leave and fix page bits
;
Read_bit     CLRB    in_bit                  ;assume input bit low
		MOV     !ra,#portsetup_r        ;set Port A up to read
		SETB    scl                     ;flip I2C clock to high
;            MOV     W,#t_high               ;get read cycle timing*
		CALL    Bus_delay               ;Go do delay
		SNB     sda                     ;is data line high?
		SETB    in_bit                  ;yes, switch input bit high
		CLRB    scl                     ;return I2C clock low
;            MOV     W,#t_buf                ;get bus=free cycle timing*
		CALL    Bus_delay               ;Go do delay
		RETP                            ;leave and fix page bits
;
;
Take_sample  BANK    analog                  ;switch to analog bank
		MOV     W,ADC1                  ;get ADC1 value
		BANK    I2C                     ;switch to EEPROM bank
		SNB     got_hex                 ;did user enter a value?
		MOV     W,number_low            ;yes, load it instead
		MOV     data,W                  ;save ADC1 value
		CALL    I2C_Write               ;store it in EEPROM
		INC     address                 ;move to next address
		INC     byte_count              ;adjust # bytes stored
		MOV     W,eeprom_size           ;get memory size
		MOV     W,address-W             ;are we past end?
		SNZ                             ;if not, skip ahead
		CLR     address                 ;if so, reset it
:done        RETP                            ;leave and fix page bits
;
View_Mem     MOV     W,byte_count            ;get # bytes stored
:all         MOV     num_bytes,W             ;store it into view count
		MOV     W,#_view                ;get view message
		PAGE    send_string             ;set up for long call
		CALL    send_string             ;dump it
		BANK    I2C                     ;switch to EEPROM bank
		MOV     number_low,byte_count   ;get byte storage count
		PAGE    send_hex                ;set up for long call
		CALL    send_hex:num_only       ;dump it
		BANK    I2C                     ;switch to I2C bank
		MOV     W,#0                    ;Address = start of EEPROM
		JMP     :address                ;Go store address
:single      MOV     num_bytes,#1            ;only a single byte
		MOV     W,number_low            ;get the address pointer
:address     MOV     address,W               ;store requested address
		MOV     W,#_cr                  ;get carriage return
:dump        PAGE    send_string             ;set up for long call
		CALL    send_string             ;send it
		BANK    I2C                     ;Switch to I2C bank
		SB      erasing                 ;viewing after erase cycle
		SNB     got_hex                 ; or special hex value?
		JMP     :viewloop               ;yes, go dump it
		TEST    save_addr               ;no, is EEPROM empty?
		SNZ                             ;if not, skip ahead
		JMP     :done                   ;yes, so leave
:viewloop    CALL    I2C_read                ;fetch byte from EEPROM
		MOV     number_low,data         ;setup to send it
		PAGE    send_hex                ;set up for long call
		CALL    send_hex:num_only       ;transmit it (RS232)
		BANK    I2C                     ;switch to I2C bank
		DEC     num_bytes               ;decrement byte count
		SNZ                             ;skip ahead if not done
		JMP     :done                   ;all bytes dumped, exit
		INC     address                 ;move to next address
		MOV     W,#00001111b            ;keep low nibble
		AND     W,address               ; of address pointer
		MOV     W,#_space               ;default=send a space
		SNZ                             ;have we done 16 bytes?
		MOV     W,#_cr                  ;yes, point to a <cr>
		JMP     :dump                   ;go dump it and continue
:done        MOV     address,save_addr       ;restore address pointer
		RETP                            ;leave and fix page bits
;
Erase_Mem    CLR     address                 ;restore address pointer
		SETB    erasing                 ;flag erase operation
		MOV     num_bytes,#eeprom_size  ;wipe whole mem
:wipeloop    CLR     data                    ;byte to wipe with=0
;            MOV     data,address            ;byte to wipe with=addr
		CALL    I2C_write               ;wipe EEPROM byte
		INC     address                 ;move to next address
		DJNZ    num_bytes,:wipeloop     ;Erased enough yet?
		CLR     byte_count              ;done, reset stored count
		CLR     save_addr               ;reset backup address
		MOV     W,#eeprom_size          ;load mem size into W
		CALL    View_mem:all            ; and view cleared memory
		CLRB    erasing                 ;flag operation done    
		RETP                            ;leave and fix page bits
;****** End of I2C Subroutines
;
;************************** MAIN PROGRAM CODE ******************************
;
		ORG     140h
;
; This is where code execution begins on power-up and after resets
;
reset_entry
		mov      ra,#%1011              ;initialize port RA
		mov     !ra,#%0100              ;Set RA in/out directions
		mov      rb,#%10000000          ;initialize port RB
		mov     !rb,#%00001111          ;Set RB in/out directions
		clr     rc                      ;initialize port RC
		mov     !rc,#%10101010          ;Set RC in/out directions
		mov     m,#$D                   ;set input levels
		mov     !rc,#0                  ; to cmos on port C
		mov     m,#$F                   ;reset mode register
		CLR     FSR                     ;reset all ram starting at 08h
:zero_ram    SB      FSR.4                   ;are we on low half of bank?
		SETB    FSR.3                   ;If so, don't touch regs 0-7
		CLR     IND                     ;clear using indirect addressing
		IJNZ    FSR,:zero_ram           ;repeat until done

		bank    timers                  ;set defaults
		setb    timer_low.0             ;LED off
		setb    freq_low.0              ;speaker off

		mov     !option,#%10011111      ;enable rtcc interrupt
;
; Terminal - main loop
;
terminal     mov     w,#_hello               ;send hello string
		call    send_string
:loop        mov     w,#_prompt              ;send prompt string
		call    send_string

		call    get_byte                ;get command via UART
		call    uppercase               ;make it uppercase
		mov     cmd,byte                ; and store it
		call    get_hex                 ;get hex number (if present)
:check_cmds                                  ;note: below, xx=hex value
		cje     cmd,#'T',:timer         ;T xxxx
		cje     cmd,#'F',:freq          ;F xxxx
		cje     cmd,#'A',:pwm0          ;A xx
		cje     cmd,#'B',:pwm1          ;B xx
		cje     cmd,#'C',:adc0          ;C
		cje     cmd,#'D',:adc1          ;D
; Command: S [xx] - Store sample (if xx is left out, ADC1 is sampled)
;                 - if xx is left out, adc1 value is stored
;
		cje     cmd,#'S',:sample        ;S [xx] =store sample
;
; Command: V [xx] - View stored byte(s)
;                 - if xx is left out, all stored byted are shown
;                 - if xx=ff then whole eeprom is dumped
;
		cje     cmd,#'V',:view          ;V [xx] =View EEPROM contents
;
; Command: E - Erase EEPROM contents and reset storage pointer
;
		cje     cmd,#'E',:erase         ;E = Erase whole EEPROM

		mov     w,#_error               ;bad command
		call    send_string             ;send error string
		jmp     :loop                   ;try again

:timer       bank    timers                  ;timer write
		mov     timer_low,number_low    ;store new timer value
		mov     timer_high,number_high  ; (16 bits)
		jmp     :loop

:freq        bank    timers                  ;freq write
		mov     freq_low,number_low     ;store new frequency value
		mov     freq_high,number_high   ; (16 bits)
		jmp     :loop

:pwm0        bank    analog                  ;pwm0 write
		mov     pwm0,number_low         ;store new pwm0 value
		jmp     :loop

:pwm1        bank    analog                  ;pwm1 write
		mov     pwm1,number_low         ;store new pwm0 value
		jmp     :loop

:adc0        bank    analog                  ;adc0 read
		mov     number_low,adc0         ;get current adc0 value
		call    send_hex                ;transmit it (via UART)
		jmp     :loop

:adc1        bank    analog                  ;adc1 read
		mov     number_low,adc1         ;get current adc1 value
		call    send_hex                ; transmit it (via UART)
		jmp     :loop

:sample      BANK    I2C                     ;Switch to I2C bank
		PAGE    Take_sample             ;I2C subroutine page
		CALL    Take_sample             ;Go take a sample
		MOV     W,#_sample              ;get sample message
		CALL    send_string             ;dump it
		BANK    I2C                     ;switch to EEPROM bank
		MOV     number_low,data         ;byte sent
		CALL    send_hex:num_only       ;dump it
		JMP     :loop                   ;back to main loop
;
:view        BANK    I2C                     ;switch to I2C bank
		MOV     save_addr,address       ;backup address pointer
		SNB     got_hex                 ;Was this "V xx" command?
		JMP     :v_special              ;if so, jump
		PAGE    View_mem                ;I2C subroutine page
		CALL    View_mem                ;no, view all stored data
		JMP     :loop                   ;back to main loop
:v_special   MOV     W,++number_low          ;View whole mem=> "V ff"
		JZ      :v_whole                ;Was this requested?
		PAGE    View_mem                ;I2C subroutine page
		CALL    View_mem:single         ;yes, go dump it
		JMP     :loop                   ;back to main loop
:v_whole     MOV     W,#eeprom_size          ;Get eeprom mem size
		PAGE    View_mem                ;I2C subroutine page
		CALL    View_mem:all            ;Go dump the whole thing
		JMP     :loop                   ;back to main loop
;
:erase       BANK    I2C                     ;switch to I2C bank
		PAGE    Erase_mem               ;I2C subroutine page
		CALL    Erase_mem               ;no, wipe whole EEPROM
		JMP     :loop                   ;back to main loop
;***************
		END                             ;End of program code


file: /Techref/scenix/sxdemo.src, 40KB, , updated: 1999/6/14 11:16, local time: 2024/10/4 01:39,
TOP NEW HELP FIND: 
3.238.82.77:LOG IN
©2024 PLEASE DON'T RIP! THIS SITE CLOSES OCT 28, 2024 SO LONG AND THANKS FOR ALL THE FISH!

 ©2024 These pages are served without commercial sponsorship. (No popup ads, etc...).Bandwidth abuse increases hosting cost forcing sponsorship or shutdown. This server aggressively defends against automated copying for any reason including offline viewing, duplication, etc... Please respect this requirement and DO NOT RIP THIS SITE. Questions?
Please DO link to this page! Digg it! / MAKE!

<A HREF="http://piclist.com/techref/scenix/sxdemo.src"> scenix sxdemo</A>

Did you find what you needed?

  PICList 2024 contributors:
o List host: MIT, Site host massmind.org, Top posters @none found
- Page Editors: James Newton, David Cary, and YOU!
* Roman Black of Black Robotics donates from sales of Linistep stepper controller kits.
* Ashley Roll of Digital Nemesis donates from sales of RCL-1 RS232 to TTL converters.
* Monthly Subscribers: Gregg Rew. on-going support is MOST appreciated!
* Contributors: Richard Seriani, Sr.
 

Welcome to piclist.com!

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  .