

CHAPTER 1 Z86017/Z16017 PCMCIA INTERFACE OVERVIEW

1.1 FEATURES

Device	RAM (Bytes)	Speed	Package	
Z86017	256	20	100–Pin VQFP	
Z86M17*	256	20	100–Pin VQFP	
Z16017	256	20	100–Pin VQFP	
Z16M17*	256	20	100–Pin VQFP	
* Mirror Image Bond-Out Options				

PCMCIA Configuration Registers

- Sequencer for Programming Attribute Memory using EEPROM content, Master Mode
- Serial Peripheral Interface (SPI) Circuitry Allows Control Through the Local Microprocessor, Slave Mode

1.2 GENERAL DESCRIPTION

The Z86017/Z16017 (017) are general-purpose PCMCIA adapter chips used on the card side of the interface. For increased versatility, "mirror image" bond-out versions, the Z86M17 and Z16M17, are also available. These chips are easily configured to allow access to all types of memory or I/O-mapping peripherals, such as Ethernet controllers, Universal Asynchronous Receiver/Transmitters (UART), modems, rotating disk memory, and so on.

The 017 can be used in a stand-alone configuration without the use of a local processor when all necessary data for Attribute Memory, Card Configuration Registers (CCR), Memory/I/O maps, and so on, are being provided by a local serial EEPROM. The serial EEPROM is read automatically using an internal EEPROM sequencer. The 017 can also be configured by a local microprocessor, when one is being used on the card.

- PCMCIA to I/O Peripheral
- PCMCIA to ATA/IDE Translation
- ATA/IDE to ATA/IDE Mapping, Pass Through Mode
- Operates from a 3V to 5.5V Power Supply
- Conforms to PCMCIA Standards
- Low Power Dissipation
- Mirror Image Bond-Out Option (Z86M17/Z16M17)
- On-Chip Generation of IOIS16 in I/O Mode (Z16017)

Throughout this document, references to the 017 device applies equally to the Z86017 and Z16017, unless otherwise specified.

Notes: All Signals with a preceding front slash, /, are active Low, e.g., B//W (WORD is active Low); /B/W (BYTE is active Low, only).

Power connections follow conventional descriptions below:

Connection	Circuit	Device	Device	
Power	V _{cc}	V _{dd}		
Ground	GND	V _{ss}		

1.2 GENERAL DESCRIPTION (Continued)

The 017 can be programmed by one of two ways: an external 256 byte serial EEPROM can be connected to the serial port interface, or a microprocessor can be connected to this port to provide a higher level of control. The functional block diagram for the 017 device is shown in Figure 1-1.

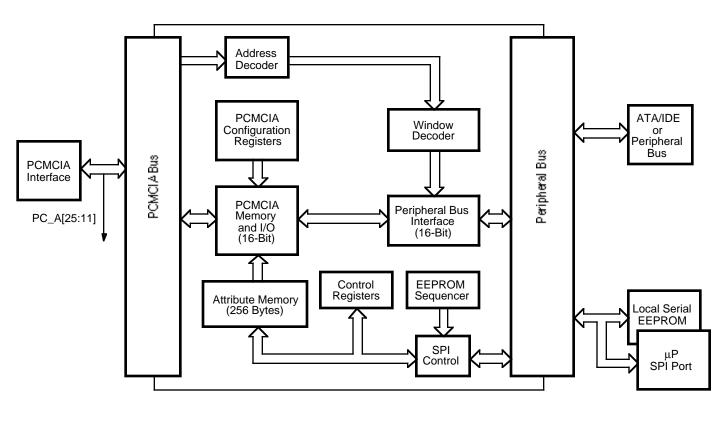


Figure 1-1. 017 Functional Block Diagram

1.2.1 Power-On Reset

The 017 defaults to the Memory Only interface as outlined in the PCMCIA specification upon deassertion of Power-On Reset (/POR). The hardware sets Busy on the PC_RDY//BSY pin and then addresses the EE_MASTER pin. If the EE_MASTER pin is unconnected or pulled High, the 017 serial interface defaults to the Master mode and an external EEPROM is required. If this pin is pulled Low, the Slave mode is selected and an external microprocessor is required to configure the 017 through the serial interface pins.

Next, the hardware addresses the /PC_ATA//HOE pin. If the /PC_ATA//HOE pin is held Low for 40 clocks (PC_MCLK_IN) after POR deassertion, the 017 is enabled for ATA/IDE to ATA/IDE pass through mode. The pass through mode is for systems that use the physical PCMCIA 68-pin connector but do not support PCMCIA protocol. If this pin is held High (/PC_ATA//HOE), the device is placed into the PCMCIA mode. The override bits in register 00H determine what mode(s) the user can support.

1.2.2 Serial Port Operation (Master) Mode

After the 017 determines that an external EEPROM is present (see Figure 1-2), the Ready/Busy pin on the PCM-CIA interface is set to Busy. The 017 internal sequencer starts up and reads EEPROM address 1EH. If EEPROM address 1EH is loaded with a 1CH then the EEPROM's data is considered to be valid. After that, the internal sequencer resets its address counter back to zero. Data from EEPROM's addresses [00-2F] is read out and put into the on-board registers of the 017. The EEPROM sequencer then reads EEPROM addresses 30H to FFH and each byte is moved into the 017 on-board attribute memory addresses 00-CFH. After loading the registers and attribute memory, the sequencer completes by clearing the Ready/Busy pin on the PCMCIA interface indicating "Ready." If EEPROM address 1EH does not contain 1CH, then the sequencer stops. The PCMCIA Ready/Busy pin stays in the Busy state, the on-board registers of the 017 remain in their default state, and attribute memory data is unknown. The user can then program the off-board EE- PROM through the PCMCIA interface by means of three special registers and Busy should be ignored.

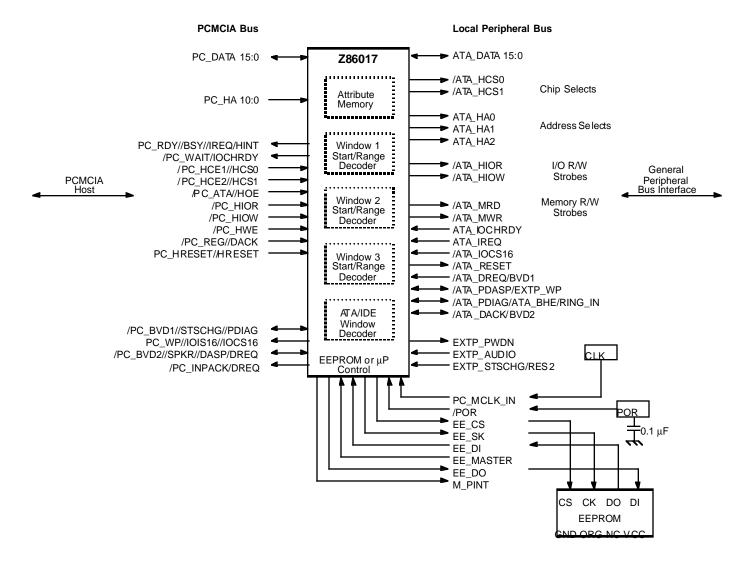


Figure 1-2. Serial Port Master Mode Control

When the 017 is placed in serial port Slave mode (EE_Master signal grounded on POR), the EEPROM sequencer is disabled and the user must provide external hardware (microprocessor) with serial interface to program CCRs and Attribute Memory. Additionally, if the POR signal is deasserted, the user must provide a clock source on the PC_MCLK_IN pin in the range of 1-20 MHz.

The external hardware can program the on-board registers and the attribute memory by selecting the 017 and pulling the EE_CS pin High. The external hardware must set up the data to be sent to the 017 on the EE_DI pin and strobe the EE_SK pin. The first byte of data is the address selected by the user, the second byte is the command byte and the third byte is the data. The external hardware must provide 24 clocks in order to read or write to a location in the 017 (see B-9, Slave Timing).

In order to program the on-board attribute memory, the user must first write to it. This is accomplished by writing the address location of the attribute memory to be written to (or read) in the attribute RAM data address register at location 08H. After this step has been accomplished, the user then writes (or reads) the attribute RAM data register 09H with the data to be read or written at that location. **Note:** After reading or writing to the attribute RAM data register, the attribute RAM address register is auto-incrimented.

The following example demonstrates how to program the 017 in Slave Mode. The external user's hardware writes to register 00 and selects the clock divide by and the override mode (if needed). The READY//BUSY pin remains set to 0 to indicate BUSY, and a local μ P interrupt polarity is selected. The user then programs registers 01-05, followed by registers 0AH-2FH. After which, the user writes to the attribute memory by setting the address in the address register 08H and in the loop on data register 09H with the user's attribute memory data. The user completes the operation by writing back to register 00 to clear the READY//READY status.

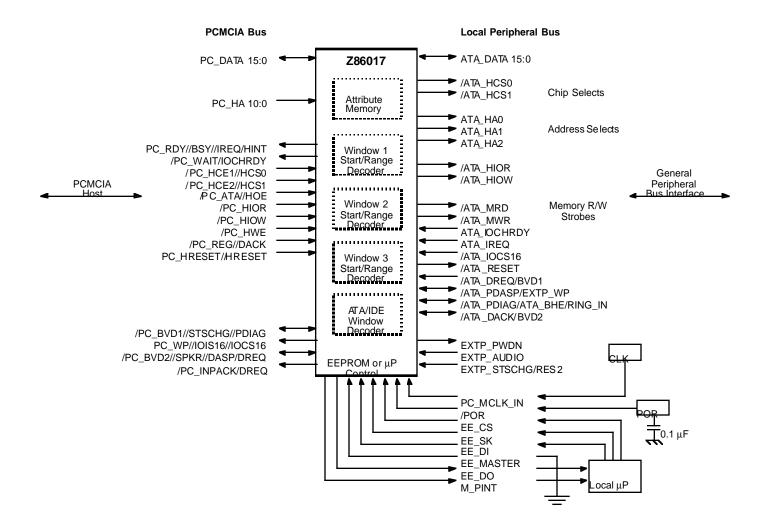


Figure 1-3. Serial Port Slave Mode Control

1.2.4 EEPROM Programming Through the PCMCIA Interface

The 017 can be used to program the serial EEPROM through the PCMCIA interface. EEPROM programming is accomplished by means of three special registers that are accessed identically to the CCR registers as defined by the PCMCIA specification (Figure 1-4). These registers are fixed at addresses 7F0, 7F2, and 7F4. The host software can read and write each byte of the EEPROM through these registers and configure the 017 device. After the

host writes new values to the EEPROM through these registers, the new values are loaded into the 017 upon Power-On Reset (/POR). **Note**: The values written to register 05H will offset the CCR registers and the three special EE-PROM programming registers on the next POR.

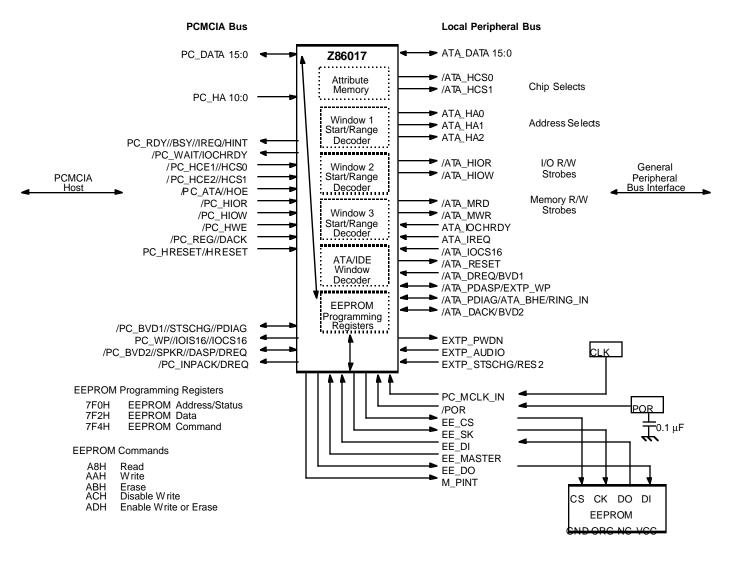
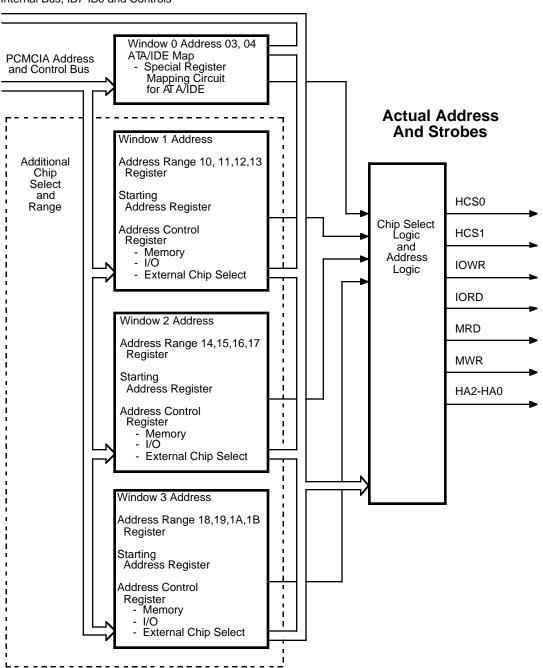



Figure 1-4. EEPROM Programming Through the PCMCIA Interface

1.2 GENERAL DESCRIPTION (Continued)

Address Mapping Circuit

Internal Bus, IB7-IB0 and Controls

Figure 1-5. Connection Block Diagram

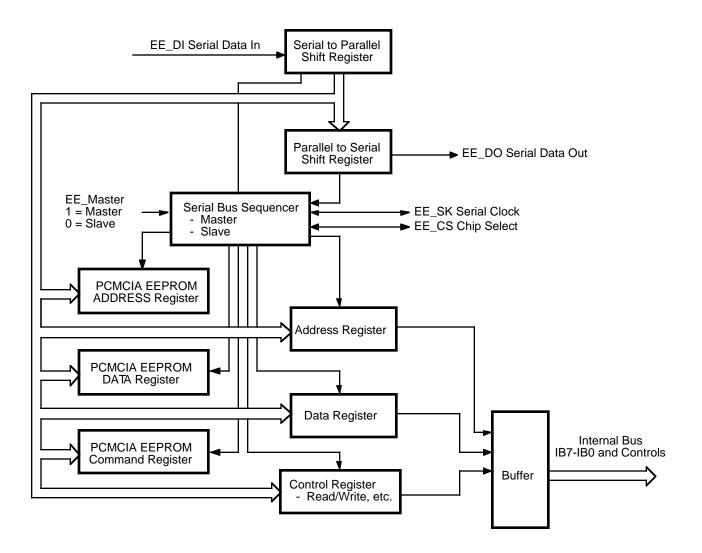


Figure 1-6. Serial Interface Diagram

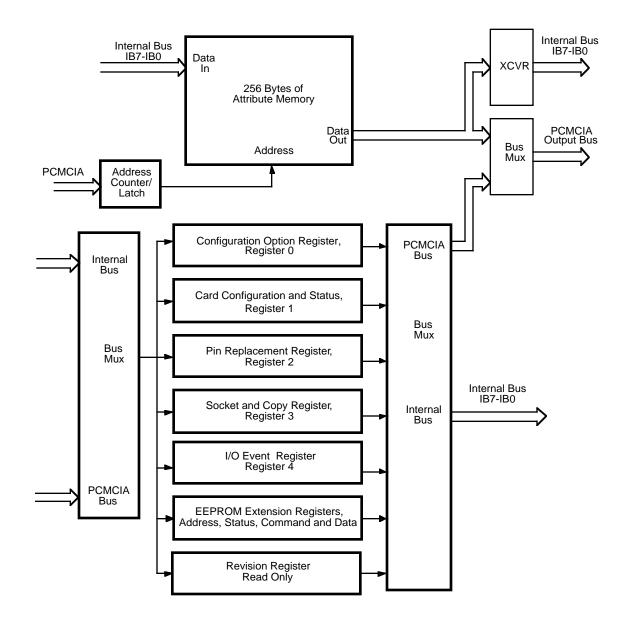


Figure 1-7. Attribute and Configuration Memory Diagram

1.3 PIN DESCRIPTION

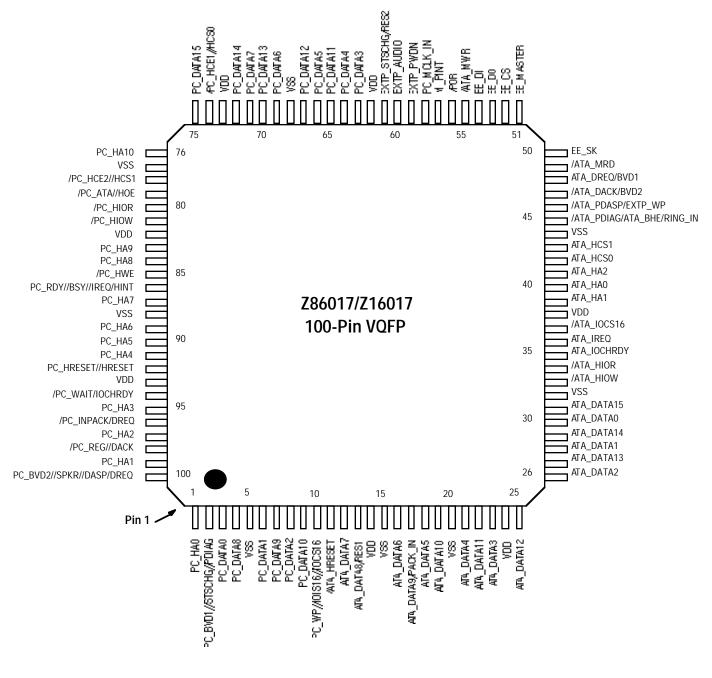
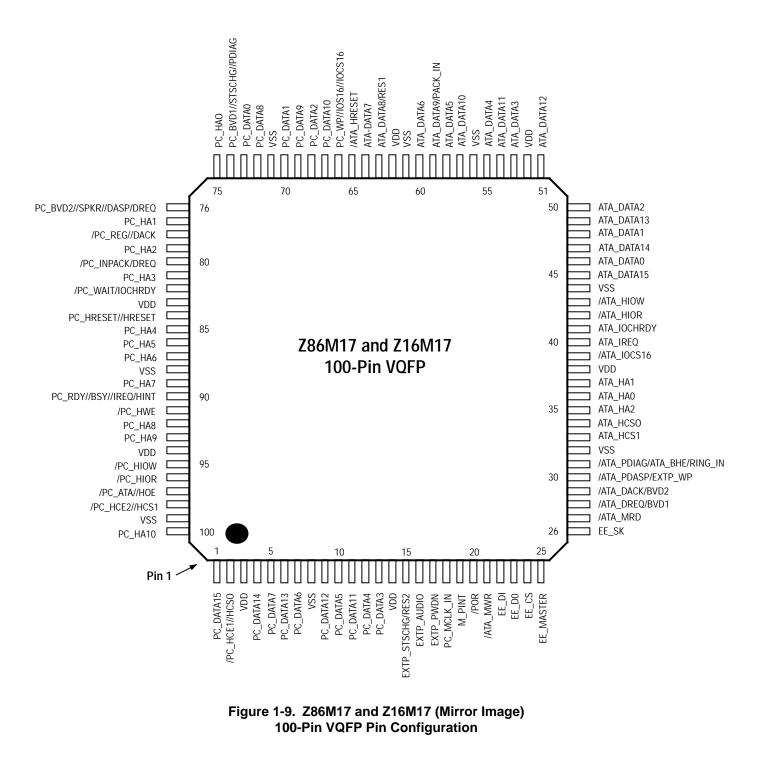



Figure 1-8. 017 100-Pin VQFP Pin Configuration

1.3 PIN DESCRIPTION (Continued)

1.4 PIN IDENTIFICATION

	Table 1-1.	100-Pin	VQFP	Pin	Identification
--	------------	---------	------	-----	----------------

017 M17		Name	Description	
1	75	PC_HA0	PCMCIA Address, Bit 0	
2	74	PC_BVD1//STSCHG//PDIAG	Battery Voltage Detect 1, Status Change, PDiag	
3	73	PC_DATA0	PCMCIA Data, Bit 0	
4	72	PC_DATA8	PCMCIA Data, Bit 8	
5	71	V _{ss}	Ground	
6	70	PC_DATA1	PCMCIA Data, Bit 1	
7	69	PC_DATA9	PCMCIA Data, Bit 9	
8	68	PC_DATA2	PCMCIA Data, Bit 2	
9	67	PC_DATA10	PCMCIA Data, Bit 10	
10	66	PC_WP//IOIS16//IOCS16	Write Protect PCMCIA I/O Is 16-Bit Transfers	
11	65	/ATA_HRESET	AT Host RESET	
12	64	ATA_DATA7	AT Host Data, Bit 7	
13	63	ATA_DATA8/RES1	AT Host Data, Bit 8, Reserved Input 1	
14	62	V _{DD}	Supply Voltage	
15	61	V _{ss}	Ground	
16	60	ATA_DATA6	AT Host Data, Bit 6	
17	59	ATA DATA9/PACK IN	AT Host Data, Bit 9, PACK_IN	
18	58	ATA DATA5	AT Host Data, Bit 5	
19	57	ATA_DATA10	AT Host Data, Bit 10	
20	56	V _{ss}	Ground	
21	55	ATA_DATA4	AT Host Data, Bit 4	
22	54	ATA_DATA11	AT Host Data, Bit 11	
23	53	 ATA_DATA3	AT Host Data, Bit 3	
24	52	V _{DD}	Supply Voltage	
25	51	ATA_DATA12	AT Host Data, Bit 12	
26	50	ATA_DATA2	AT Host Data, Bit 2	
27	49	ATA_DATA13	AT Host Data, Bit 13	
28	48	ATA_DATA1	AT Host Data, Bit 1	
29	47	ATA_DATA14	AT Host Data, Bit 14	
30	46	ATA DATA0	AT Host Data, Bit 0	
31	45	ATA DATA15	AT Host Data, Bit 15	
32	44	V _{ss}	Ground	
33	43	/ATA HIOW	AT Host I/O Write Strobe	
34	40	/ATA_HIOR	AT Host I/O Read Strobe	
35	41	ATA_IOCHRDY	AT Host I/O Channel Ready	
36	40	ATA_IREQ	AT Host Interrupt Request	
37	39	/ATA_IOCS16	AT Host I/O Is 16 Bits Wide	
38	38		Supply Voltage	
39	37	ATA_HA1	AT Host Address, Bit 1	
40	36	ATA_HA0	AT Host Address, Bit 1	
40	35	ATA_HA2	AT Host Address, Bit 0	
41	33	ATA_HCS0	AT Host Address, Bit 2 AT Host Chip Select 0	
42	33	ATA_HCS0	AT Host Chip Select 0 AT Host Chip Select 1	
43	33	V _{ss}	Ground	

017	M17	Name	Description
45	31	/ATA_PDIAG/ATA_BHE/Ring_IN	PDIAG I/O, Byte High Enable, RING_IN
46	30	/ATA_PDASP/EXTP_WP	PDASP I/O or Write Protect In
47	29	/ATA_DACK/BVD2	AT Host DMA Acknowledge,
			Battery Voltage Input 2
48	28	ATA_DREQ/BVD1	AT Host DMA Request, Battery Voltage Input 1
49	27	/ATA_MRD	AT Host Memory Read Strobe
50	26	EE_SK	EEPROM Data Clock
51	25	EE_MASTER	EEPROM Is Master
52	24	EE_CS	EEPROM Data Chip Select
53	23	EE_DO	EEPROM Data Out
54	22	EE_DI	EEPROM Data In
55	21	/ATA_MWR	AT Host Memory Write Strobe
56	20	/POR	Power-On Reset
57	19	M_PINT	Local Processor Interrupt
58	18	PC_MCLK_IN	Master Clock In
59	17	EXTP_PWDN	Power Down Output
60	16	EXTP_AUDIO	Audio Input
61	15	EXTP_STSCHG/RES2	Status Change Input, Reserved Input 2
62	14	V _{DD}	Supply Voltage
63	13	PC DATA3	PCMCIA Data, Bit 3
64	12	PC DATA4	PCMCIA Data, Bit 4
65	11	PC_DATA11	PCMCIA Data, Bit 11
66	10	PC_DATA5	PCMCIA Data, Bit 5
67	9	PC_DATA12	PCMCIA Data, Bit 12
68	8	V _{ss}	Ground
69	7	PC DATA6	PCMCIA Data, Bit 6
70	6	PC_DATA13	PCMCIA Data, Bit 13
70	5	PC_DATA7	PCMCIA Data, Bit 7
72	4	PC_DATA14	PCMCIA Data, Bit 14
73	3	V _{DD}	Supply Voltage
	2	/PC_HCE1//HCS0	
74 75	1	PC_DATA15	PCMCIA Card Enable 1 /ATA Chip Select 0 PCMCIA Data, Bit 15
	100	PC_DATATS PC_HA10	PCMCIA Data, Bit 15 PCMCIA Address, Bit 10
76 77	99		Ground
78	98	/PC_HCE2//HCS1	PCMCIA Card Enable 2 /ATA Chip Select 1
79	97	/PC_ATA//HOE	Mode Select /PCMCIA Output Enable
80	96	/PC_HIOR	PCMCIA I/O Read Strobe
81	95	/PC_HIOW	PCMCIA I/O Write Strobe
82	94	V _{DD}	Supply Voltage
83	93	PC_HA9	PCMCIA Address, Bit 9
84	92	PC_HA8	PCMCIA Address, Bit 8
85	91	/PC_HWE	PCMCIA Write Enable
86	90	PC_RDY//BSY//IREQ/HINT	PCMCIA Ready/Busy, Interrupt Request
87	89	PC_HA7	PCMCIA Address, Bit 7

Table 1-1. 100-Pin VQFP Pin Identification

017 M17		Name	Description	
38	88	V _{ss}	Ground	
89	87	PC_HA6	PCMCIA Address, Bit 6	
90	86	PC_HA5	PCMCIA Address, Bit 5	
)1	85	PC_HA4	PCMCIA Address, Bit 4	
2	84	PC_HRESET//HRESET	PCMCIA Reset	
93	83	V _{DD}	Supply Voltage	
94	82	/PC_WAIT/IOCHRDY	PCMCIA Wait, /IOCHRDY	
95	81	PC_HA3	PCMCIA Address, Bit 3	
6	80	/PC_INPACK/DREQ	PCMCIA Input Acknowledge, DREQ	
97	79	PC_HA2	PCMCIA Address, Bit 2	
8	78	/PC_REG//DACK	PCMCIA Register Signal, DACK	
99	77	PC_HA1	PCMCIA Address, Bit 1	
00	76	/PC_BVD2//SPKR//DASP/DREQ	PCMCIA Battery Voltage Detect 2, Speaker Output, DASP, DREQ	

Table 1-1. 100-Pin VQFP Pin Identification

1.5 PIN FUNCTIONS

1.5.1 PCMCIA Signals

PC_DATA<15:0>	(I/O, Tri-State, 8 mA)			
PCMCIA Mode: 16-bit host E	Data bus.			
ATA/IDE Mode: 16-bit host D)ata bus.			
PC_HA<10:3>	(Input)			
PCMCIA Mode: Host Addres	ss lines: 10,9,8,7,6,5,4,3.			
ATA/IDE Mode: Not used.				
PC_HA<2:0>	l(nput)			
PCMCIA Mode: Host Addres	s lines: 2,1,0.			
ATA/IDE Mode: Host Addres	s lines: 2,1,0.			
/PC_HCE1//HCS0	(Input, 100K Pull-Up)			
PCMCIA Mode: This signal is	s Card Enable 1 (active			
Low).				
ATA/IDE Mode: Host Chip Se	· · · · · ·			
/PC_HCE2//HCS1	(Input, 100K Pull-Up)			
PCMCIA Mode: This signal is Card Enable 2 (active Low).				
ATA/IDE Mode: Host Chip Se	elect 1 (active Low).			
/PC_REG//DACK	(Input, 100K Pull-Up)			
PCMCIA Mode: (/REG), Reg				
the host selects I/O or Attribu	•			
ATA/IDE Mode: Data acknowledge (/DACK) defined in ATA. Issued during DMA data transfers on the data bus.				
/PC ATA//HOE				
PC_ATA/HOE PCMCIA Mode: Memory Out	(Input, 100K Pull-Up)			
ATA/IDE Mode: When pulled	•			
this signal indicates ATA/IDE	-			
/PC_HWE	(Input, 100K Pull-Up)			
PCMCIA Mode: Memory Wri				
ATA/IDE Mode: Not used.				
/PC_HIOR	(Input, 100K Pull-Up)			
PCMCIA Mode: In PCMCIA				
Input/Output Read Strobe.				
ATA/IDE Mode: Input/Output				
/PC_HIOW	(Input, 100K Pull-Up)			
PCMCIA Mode: In PCMCIA	I/O mode, this is the			
Input/Output Write Strobe.				
ATA/IDE Mode: Input/Output				
PC_HRESET//HRESET	(Input, Schmitt-Triggered, 100K Pull-Up)			
PCMCIA Mode: Active High input Reset signal.				
ATA/IDE Mode: Active Low input Reset signal.				
PC_RDY//BSY//IREQ/HINT	(Output, 8 mA)			

PCMCIA Mode: In PCMCIA memory mode, this signal is READY//BUSY. This signal will be asserted BUSY by the RESET logic. In PCMCIA I/O mode, this signal is /IREQ.

ATA/IDE Mode: When enabled, the HINT signal is used to interrupt the host (active High).

PC_WP//IOIS16//IOCS16 (Output, Tri-State, 8 mA) PCMCIA Mode: In PCMCIA memory mode, this signal is Write Protected. In PCMCIA I/O mode, this signal is IOIS16 and indicates that a 16-bit capable I/O device is being accessed on the PCMCIA bus.

ATA/IDE Mode: I/O chip select 16 indicates that a 16bit transfer is active on the bus.

/PC_WAIT/IOCHRDY (*Output, Tri-State, 8 mA*) **PCMCIA Mode:** Insert Wait States when held active and the chip is being selected in I/O or memory mode.

ATA/IDE Mode: Inserts Wait States when held active, and when the chip is being selected.

/PC_INPACK/DREQ (Output, Tri-State, 8 mA) **PCMCIA Mode:** In PCMCIA I/O mode this signal is Input Acknowledge. It is asserted by the card when the card is selected and can respond to an I/O cycle at the address on the address bus.

ATA/IDE Mode: This signal is Data request (DREQ), defined in ATA. It is issued during DMA data transfers on the data bus.

(I/O, 8 mA)

PCMCIA Memory Mode: Battery Voltage Detect 1, output.

PCMCIA I/O Mode: Status Changed. This signal is used to indicate the change of status in the Pin Replacement Register (I/O Mode) or state of the BVD1 input when in Memory Mode.

ATA/IDE Mode: Passed diagnostics.

PC BVD1//STSCHG//PDIAG

PC_BVD2//SPKR//DASP/DREQ (I/O, Tri-State, 10 mA) PCMCIA Memory Mode: Battery Voltage Detect 2, output.

PCMCIA I/O Mode: SPKR, inverted AUDIO_EXTP signal, output;

PCMCIA ATA Mode: ATA Data Request is the input pin for this signal, when DMA Enable bit is set in Window Start/Range Address registers.

ATA/IDE Mode: Drive active/Slave present DASP.

(I/O, Tri-State, 8 mA)

ATA/IDE Mode: Host Data Bus, bits: 15,14,13,12,11,10.

ATA DATA<15:10>

1.5.2 Peripheral or ATA/IDE Signals

ATA_DATA<15:10>	(I/O, Tri-State, 8 mA)
ATA/IDE Mode: Host Data Bus	, bits:
15,14,13,12,11,10.	
Peripheral Mode: Peripheral da	ata bus, bits: 15, 14, 13,
12, 11,10.	
ATA_DATA9/PACK_IN	(I/O, Tri-State, 8 mA)
ATA/IDE Mode: Host Data Bus	-
Peripheral Mode: When 8-bit n	
Local side) ATA_DATA9 can be	used as a PACK_IN
input.	
ATA_DATA8/RES1	(I/O, Tri-State, 8 mA)
ATA/IDE Mode: Host Data Bus	
Peripheral Mode: When 8-bit n	
Local side), ATA_DATA8 can be	used as a RES1 input.
ATA_DATA<7:0>	(I/O, Tri-State, 8 mA)
ATA/IDE Mode: Host Data Bus	, bits: 7,6,5,4,3,2,1,0.
Peripheral Mode: Peripheral D	
7,6,5,4,3,2,1,0.	
ATA_HA<2:0>	(Output, 8 mA)
ATA/IDE Mode: ATA Host Addre	ess bits used to address
the IDE interface chip.	
Peripheral Mode: Lower three	bits offset from starting
address.	-
/ATA_HCS0	(Output, 8 mA)
ATA/IDE Mode: ATA Host Chip	Select 0, used to select
the IDE interface chip.	
Peripheral Mode: Chip Select	•
for an external peripheral device	-
address range and offset regist	
/ATA_HCS1	(Output, 8 mA)
ATA/IDE Mode: ATA Host Chip	Select 1, used to select
the IDE interface chip.	
Peripheral Mode: Chip Select	•
for an external peripheral device	-
address range and offset regist	
/ATA_HIOR	(Output, 8 mA)
ATA/IDE Mode: ATA Host I/O R	
Peripheral Mode: I/O read stro	-
strobe, depending on configura	tion.
/ATA_HIOW	(Output, 8 mA)
ATA/IDE Mode: ATA Host I/O W	/rite Strobe.
Peripheral Mode: I/O Write Str	obe or Memory Write
Strobe, depending on configura	ation.
/ATA_IOCS16	(Input, 100K Pull-Up)
ATA/IDE Mode: I/O channel is	16 bits wide; input on
the local ATA bus.	· 1
Perinheral Mode: 1/O access is	16 bits wide

Peripheral Mode: I/O access is 16 bits wide.

ATA_IREQ	(Input)
ATA/IDE Mode: ATA/IDE hos	st Interrupt Request.
Peripheral Mode: Interrupt I	Request.
ATA_IOCHRDY	(Input, 100K Pull-Up)
ATA/IDE Mode: ATA/IDE I/O	Channel Ready-Input.
Peripheral Mode: I/O Chann	nel Ready.
/ATA_HRESET	(Output, 8 mA)
ATA/IDE Mode: ATA Host R	eset-Output to the
ATA/IDE controller (program	
Peripheral Mode: Host rese	
device if PCMCIA signal is a	
ATA_DREQ/BVD1	(Input)
ATA/IDE Mode: ATA/IDE DM	1A request from the
ATA/IDE controller.	huo DMA Degregation
Peripheral Mode: Peripheral when in memory mode Batte	•
/ATA DACK/BVD2	
—	(<i>I/O, 8 mA</i>)
ATA/IDE Mode: ATA/IDE hos Peripheral Mode: Periphera	5
DMA acknowledge is general	
DMA Acknowledge is enable	
Start/Range Address registe	
corresponds to the DMA add	
Detect input in memory mod	le.
/ATA_PDASP/EXTP_WP	(I/O, Tri-State, 8 mA)
ATA/IDE Mode: ATA/IDE bus	s side PDASP signal
controlled by internal bits ZE	N_EXT_PDASP (Input) or
ZEN_INT_PDASP (Output).	
Peripheral Mode: When cor	
input, this pin will disable Wr	ite on the peripheral bus
side.	\mathbf{C} IN (1/ \mathbf{O} Tri Ototo \mathbf{O} and \mathbf{A}
ATA_PDIAG/ATA_BHE/RIN	,
ATA/IDE Mode: ATA/IDE bus controlled by internal bits ZE	5
ZEN INT PDIAG (Output).	
Peripheral Mode: When cor	nfigured as Byte High
Enable for memory boards,	
byte available, or it can be co	
RING_IN input signal for the	I/O event indicator CCR4.
/ATA_MRD	(Output, 8 mA
ATA/IDE Mode: Not used.	
Peripheral Mode: External I	Memory Read Strobe.
/ATA_MWR	(Output, 8 mA

Peripheral Mode: External Memory Write Strobe.

1.5.3 Serial Interface Signals

	•	•	•		
EE_DO	(Output, 8 mA, Tri-State)	/POR I(nput	, Schmitt-Triggered, 100K Pull-Up)		
Master Mode: EE	PROM data out Serial data, valid	Local Power-On Reset signal. A 0.1μ F capacitor is			
during EE_SK edo	ge. In master mode, this signal is an	recommended on	recommended on this pin to GND to generate a POR.		
output.		M_PINT	(Output, Tri-State, 8 mA)		
	ave mode, this signal is an output.	Interrupt to local n	nicroprocessor		
EE_SK	(I/O, 8 mA)	PC MCLK IN	(Input, Schmitt-Triggered)		
output in master n only.	PROM data clock. This signal is an node. It is active during R/W cycle	<i>Master Clock In.</i> This is an input signal. This clock signal is used to generate all internal timing. All local bus signals are asynchronous to this clock.			
	ave mode, this signal is an input.	EXTP_STSCHG/F	RES2 (Input, 100K Pull-Up)		
EE_CS(I/O, 8 mA)Master Mode: EEPROM data chip select. This signalis an output in master mode.Slave Mode: In slave mode this signal is an input. Thissignal is active High.		<i>Status Change Input.</i> This signal outputs the value of the status changed line on the PCMCIA bus if enabled in the CCR register, or it is an input for bit 7 (RSVDEVT3) in CCR4.			
EE_DI	(Input, 100K Pull-Up)	EXTP_AUDIO	(Input 100K Pull-Up)		
<i>Master Mode:</i> EEPROM data in. This signal is an input in master mode.		output. This signal	input signal reflects the audio is active High, and the Speaker //CIA bus is active Low.		
	ave mode, this signal is an input.	EXTP_PWDN	(Output, 8 mA)		
EE_MASTER	(Input, Schmitt-Triggered, 100K Pull-Up)	<i>Power Down Out</i> the Power Down b	<i>put.</i> This signal reflects the state of it in the CCR.		
	<i>de detect:</i> When set Low, no	V _{ss}	(Input)		
EEPROM is present. When set High EEPROM is present.		Ground.			
-		V _{DD}	(Input)		
		Supply Voltage.			

1.5.4 Peripheral Control Signals